返回
RepVgg实战:图像分类新秀,VGG的现代复兴
人工智能
2024-02-13 12:40:52
1. RepVgg 简介
RepVgg(Resnet-inspired VGG)是一种由旷视科技提出的新型神经网络架构。它通过结构重参数化让VGG再次伟大。所谓“VGG式”指的是:没有任何分支,网络结构简单,层数深。VGG的简单性和有效性使其成为图像分类任务中的经典模型。然而,VGG也存在一些问题,例如计算复杂性和参数冗余。RepVgg通过结构重参数化解决了这些问题,使VGG焕发了新的生机。
2. RepVgg 的原理
RepVgg的原理很简单,它通过结构重参数化来简化VGG的结构。具体来说,RepVgg将VGG中的每个卷积层都分解成了两个较小的卷积层。这样一来,VGG的层数就增加了一倍,但是参数的数量却减少了一半。这种结构重参数化不仅简化了VGG的结构,还提高了VGG的准确率。
3. RepVgg 的实现
RepVgg的实现非常简单,我们可以使用PyTorch或TensorFlow等深度学习框架轻松地实现它。下面是一个使用PyTorch实现RepVgg的示例代码:
import torch
import torch.nn as nn
class RepVgg(nn.Module):
def __init__(self, num_classes=10):
super(RepVgg, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU()
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU()
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(128)
self.relu4 = nn.ReLU()
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(256)
self.relu5 = nn.ReLU()
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.bn6 = nn.BatchNorm2d(256)
self.relu6 = nn.ReLU()
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.bn7 = nn.BatchNorm2d(512)
self.relu7 = nn.ReLU()
self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.bn8 = nn.BatchNorm2d(512)
self.relu8 = nn.ReLU()
self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.bn9 = nn.BatchNorm2d(512)
self.relu9 = nn.ReLU()
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.bn10 = nn.BatchNorm2d(512)
self.relu10 = nn.ReLU()
self.maxpool5 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(512, 4096)
self.relu11 = nn.ReLU()
self.fc2 = nn.Linear(4096, 4096)
self.relu12 = nn.ReLU()
self.fc3 = nn.Linear(4096, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.maxpool1(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu4(x)
x = self.maxpool2(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.relu5(x)
x = self.conv6(x)
x = self.bn6(x)
x = self.relu6(x)
x = self.maxpool3(x)
x = self.conv7(x)
x = self.bn7(x)
x = self.relu7(x)
x = self.conv8(x)
x = self.bn8(x)
x = self.relu8(x)
x = self.maxpool4(x)
x = self.conv9(x)
x = self.bn9(x)
x = self.relu9(x)
x = self.conv10(x)
x = self.bn10(x)
x = self.relu10(x)
x = self.maxpool5(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.relu11(x)
x = self.fc2(x)
x = self.relu12(x)
x = self.fc3(x)
return x
4. RepVgg 的评估
RepVgg在ImageNet数据集上的表现非常出色。在ImageNet 2012数据集上,RepVgg-B1模型的准确率达到了93.54%,而RepVgg-B2模型的准确率则达到了94.26%。这表明,RepVgg是一种非常有效的图像分类模型。
5. 总结
RepVgg是一种通过结构重参数化让VGG再次伟大的新型神经网络架构。它继承了VGG的简单性和有效性,同时解决了VGG的计算复杂性和参数冗余问题。在ImageNet数据集上的表现非常出色,是一种非常有效的图像分类模型。