返回

柠檬水找零:巧用数学智慧,掌握最优找零策略

前端

当你经营一个柠檬水摊时,你可能会遇到各种各样的顾客。有些顾客会给你大额钞票,而另一些顾客只会给你小额钞票。你需要确保你有足够的零钱来给他们找零。

柠檬水找零是一道经典的算法题,它要求你设计一个算法来确定在给定的一组硬币下,你是否能够为给定的金额找零。

这道题的关键是要找到找零的最佳规律。我们知道,找零的最佳策略是使用最少的硬币来进行找零。

我们可以使用贪心算法来解决这个问题。贪心算法的基本思想是,在每一步中,我们总是选择最优的局部解。在柠檬水找零问题中,我们总是选择面值最大的硬币来进行找零。

def can_make_change(amount, coins):
  """
  Determine if it is possible to make change for the given amount using the given coins.

  Args:
    amount: The amount of money to make change for.
    coins: A list of coin denominations.

  Returns:
    True if it is possible to make change for the given amount using the given coins, False otherwise.
  """

  # Sort the coins in descending order.
  coins.sort(reverse=True)

  # Initialize a list to store the remaining amount.
  remaining_amount = amount

  # Iterate over the coins.
  for coin in coins:
    # While the remaining amount is greater than or equal to the current coin, add the current coin to the list of coins used and subtract the current coin from the remaining amount.
    while remaining_amount >= coin:
      remaining_amount -= coin

  # If the remaining amount is zero, then it is possible to make change for the given amount using the given coins.
  return remaining_amount == 0

上面的代码实现了柠檬水找零算法。我们可以使用这个算法来解决各种各样的柠檬水找零问题。

除了使用贪心算法之外,我们还可以使用动态规划算法来解决柠檬水找零问题。动态规划算法的基本思想是,我们将问题分解成更小的子问题,然后逐个解决这些子问题。

使用动态规划算法解决柠檬水找零问题时,我们可以定义一个状态转移方程。状态转移方程如下:

dp[i][j] = True if it is possible to make change for amount i using coins up to coin j, False otherwise.

我们可以使用下面的代码来实现动态规划算法:

def can_make_change_dp(amount, coins):
  """
  Determine if it is possible to make change for the given amount using the given coins using dynamic programming.

  Args:
    amount: The amount of money to make change for.
    coins: A list of coin denominations.

  Returns:
    True if it is possible to make change for the given amount using the given coins, False otherwise.
  """

  # Create a table to store the state of the problem.
  dp = [[False] * (amount + 1) for _ in range(len(coins) + 1)]

  # Initialize the first row of the table.
  for i in range(len(coins) + 1):
    dp[i][0] = True

  # Iterate over the rows of the table.
  for i in range(1, len(coins) + 1):
    # Iterate over the columns of the table.
    for j in range(1, amount + 1):
      # If the current coin is greater than the current amount, then it is not possible to make change for the current amount using the current coin.
      if coins[i - 1] > j:
        dp[i][j] = dp[i - 1][j]
      # Otherwise, it is possible to make change for the current amount using the current coin.
      else:
        dp[i][j] = dp[i - 1][j] or dp[i][j - coins[i - 1]]

  # Return the value in the last cell of the table.
  return dp[len(coins)][amount]

上面的代码实现了柠檬水找零算法的动态规划解法。我们可以使用这个算法来解决各种各样的柠檬水找零问题。