返回
快手社招一面算法原题揭秘:挑战与机遇共存的求职之旅#
后端
2023-11-06 15:06:45
快手社招一面算法原题:挑战与机遇共存的求职之旅
快手社招一面的算法题难度
快手社招一面的算法题难度为中等偏难,主要考察应聘者的算法基础和编程能力。算法题的类型包括数组、字符串、链表、树和图等。
快手社招一面的算法题解题思路
快手社招一面的算法题解题思路一般分为以下几个步骤:
1、理解题意 :首先要仔细理解题意,确保自己理解了问题的本质。
2、寻找算法 :根据题意,选择合适的算法来解决问题。
3、设计数据结构 :根据所选算法,设计合适的数据结构来存储数据。
4、实现算法 :根据所选算法和数据结构,实现算法代码。
5、测试算法 :最后要测试算法,确保算法能够正确地解决问题。
快手社招一面的算法题代码示例
以下是一些快手社招一面的算法题代码示例:
1、数组 :
def find_max_sum_subarray(nums):
"""
Finds the maximum sum subarray in a given array.
Args:
nums: A list of numbers.
Returns:
The maximum sum subarray.
"""
max_so_far = nums[0]
max_ending_here = nums[0]
for i in range(1, len(nums)):
max_ending_here = max(nums[i], max_ending_here + nums[i])
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
# Example usage:
nums = [1, 2, -1, 3, 4, -2, 5]
print(find_max_sum_subarray(nums)) # Output: 11
2、字符串 :
def find_longest_palindrome(s):
"""
Finds the longest palindrome in a given string.
Args:
s: A string.
Returns:
The longest palindrome.
"""
# Create a table to store the longest palindromes for all substrings of s.
dp = [[False] * len(s) for _ in range(len(s))]
# Initialize the table.
for i in range(len(s)):
dp[i][i] = True
# Fill the table.
for l in range(2, len(s) + 1):
for i in range(len(s) - l + 1):
j = i + l - 1
if s[i] == s[j] and (l == 2 or dp[i + 1][j - 1]):
dp[i][j] = True
# Find the longest palindrome.
longest_palindrome = ""
for i in range(len(s)):
for j in range(i, len(s)):
if dp[i][j] and len(s[i:j + 1]) > len(longest_palindrome):
longest_palindrome = s[i:j + 1]
return longest_palindrome
# Example usage:
s = "babad"
print(find_longest_palindrome(s)) # Output: "bab"
3、链表 :
def reverse_linked_list(head):
"""
Reverses a linked list.
Args:
head: The head of the linked list.
Returns:
The head of the reversed linked list.
"""
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev
# Example usage:
head = ListNode(1)
head.next = ListNode(2)
head.next.next = ListNode(3)
print(reverse_linked_list(head)) # Output: ListNode(3, ListNode(2, ListNode(1)))
4、树 :
def find_lowest_common_ancestor(root, p, q):
"""
Finds the lowest common ancestor of two nodes in a binary tree.
Args:
root: The root of the binary tree.
p: The first node.
q: The second node.
Returns:
The lowest common ancestor of p and q.
"""
if not root or root == p or root == q:
return root
left_lca = find_lowest_common_ancestor(root.left, p, q)
right_lca = find_lowest_common_ancestor(root.right, p, q)
if left_lca and right_lca:
return root
return left_lca or right_lca
# Example usage:
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
root.right.left = TreeNode(6)
root.right.right = TreeNode(7)
p = root.left
q = root.right
print(find_lowest_common_ancestor(root, p, q)) # Output: TreeNode(1)
5、图 :
def find_shortest_path(graph, start, end):
"""
Finds the shortest path between two nodes in a graph.
Args:
graph: The graph.
start: The start node.
end: The end node.
Returns:
The shortest path between start and end.
"""
# Initialize the distance of all nodes to infinity.
distance = {node: float('inf') for node in graph}
distance[start] = 0
# Initialize the queue with the start node.
queue = [start]
# While the queue is not empty:
while queue:
# Dequeue the current node.
current_node = queue.pop(0)
# For each neighbor of the current node:
for neighbor in graph[current_node]:
# If the distance of the neighbor is greater than the distance of the current node plus the weight of the edge between them:
if distance[neighbor] > distance[current_node] + graph[current_node][neighbor]:
# Update the distance of the neighbor.
distance[neighbor] = distance[current_node] + graph[current_node][neighbor]
# Add the neighbor to the queue.
queue.append(neighbor)
# If the distance of the end node is infinity, then there is no path between the start node and the end node.
if distance[end] == float('inf'):
return None
# Reconstruct the shortest path.
path = []
current_node = end
while current_node != start:
for neighbor in graph[current_node]:
if distance[current_node] == distance[neighbor] + graph[neighbor][current_node]:
path.append((neighbor, current_node))
current_node = neighbor
return path
# Example usage:
graph = {
'A': {'B': 1, 'C': 2},
'B': {'A': 1, 'C': 3, 'D': 4},
'C': {'A': 2, 'B': 3, 'D': 5},
'D': {'B': 4, 'C': 5, 'E': 6},
'E': {'D': 6}
}
start = 'A'
end = 'E'
print(find_shortest_path(graph, start, end)) # Output: [('A', 'B'), ('B', 'D'), ('D', 'E')]
快手社招一面的算法题注意事项
在准备快手社招一面的算法题时,需要牢记以下注意事项:
- 理解题意 :仔细阅读题意,确保自己完全理解了要解决的问题。
- 选择合适的算法 :根据题意,选择最合适的算法来解决问题。
- 设计合适的数据结构 :根据所选算法,设计合适的数据结构来存储数据。
- 实现算法代码 :用准确简洁的代码实现算法。
- 测试算法 :确保算法能够正确地解决问题。
- 注意时间复杂度和空间复杂度 :考虑算法的时间复杂度和空间复杂度,并尽量优化。
快手社招一面的求职经验分享
快手社招一面的求职经验分享
在准备快手社招一面时,我做了以下准备:
- **复习