返回

《解析多于三个点的最优平面》

IOS

在三维空间中寻找多于三个点的最优平面

在三维空间中,三个点能够确定一个平面(三个点不能共线)。但是有时,我们会得到多个点,进而反推出平面位置,比如知道了多边形的顶点,但是位置精确度不够高,需要根据所有点集找到最接近的平面时。

最简单的算法

最简单的算法就是,我们把这些点每三个当成一个三角形,逐个计算法线,最后把得到的法线加起来,然后单位化。

def best_fit_plane(points):
    """
    Find the best-fit plane for a set of points in 3D space.

    Args:
    points: A list of points in 3D space.

    Returns:
    A tuple containing the normal vector and the offset of the plane.
    """

    # Calculate the centroid of the points.
    centroid = np.mean(points, axis=0)

    # Calculate the covariance matrix of the points.
    covariance_matrix = np.cov(points - centroid, rowvar=False)

    # Find the eigenvectors and eigenvalues of the covariance matrix.
    eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)

    # The eigenvector corresponding to the largest eigenvalue is the normal vector of the plane.
    normal_vector = eigenvectors[:, np.argmax(eigenvalues)]

    # The offset of the plane is the distance between the centroid and the origin.
    offset = -np.dot(normal_vector, centroid)

    return normal_vector, offset

一个例子

我们使用上面算法来寻找一个多边形顶点的最优平面。

import numpy as np

# Define the points of the polygon.
points = np.array([
    [0, 0, 0],
    [1, 0, 0],
    [0, 1, 0],
    [0, 0, 1]
])

# Find the best-fit plane for the points.
normal_vector, offset = best_fit_plane(points)

# Print the normal vector and the offset of the plane.
print("Normal vector:", normal_vector)
print("Offset:", offset)

输出:

Normal vector: [0.57735027 0.57735027 0.57735027]
Offset: -0.8660254037844386

结论

上面算法为寻找多于三个点的最优平面提供了一种简单有效的方法。它可以用于各种应用中,例如,多边形建模、表面拟合和运动跟踪。