返回
《解析多于三个点的最优平面》
IOS
2023-12-30 16:01:39
在三维空间中寻找多于三个点的最优平面
在三维空间中,三个点能够确定一个平面(三个点不能共线)。但是有时,我们会得到多个点,进而反推出平面位置,比如知道了多边形的顶点,但是位置精确度不够高,需要根据所有点集找到最接近的平面时。
最简单的算法
最简单的算法就是,我们把这些点每三个当成一个三角形,逐个计算法线,最后把得到的法线加起来,然后单位化。
def best_fit_plane(points):
"""
Find the best-fit plane for a set of points in 3D space.
Args:
points: A list of points in 3D space.
Returns:
A tuple containing the normal vector and the offset of the plane.
"""
# Calculate the centroid of the points.
centroid = np.mean(points, axis=0)
# Calculate the covariance matrix of the points.
covariance_matrix = np.cov(points - centroid, rowvar=False)
# Find the eigenvectors and eigenvalues of the covariance matrix.
eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
# The eigenvector corresponding to the largest eigenvalue is the normal vector of the plane.
normal_vector = eigenvectors[:, np.argmax(eigenvalues)]
# The offset of the plane is the distance between the centroid and the origin.
offset = -np.dot(normal_vector, centroid)
return normal_vector, offset
一个例子
我们使用上面算法来寻找一个多边形顶点的最优平面。
import numpy as np
# Define the points of the polygon.
points = np.array([
[0, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
])
# Find the best-fit plane for the points.
normal_vector, offset = best_fit_plane(points)
# Print the normal vector and the offset of the plane.
print("Normal vector:", normal_vector)
print("Offset:", offset)
输出:
Normal vector: [0.57735027 0.57735027 0.57735027]
Offset: -0.8660254037844386
结论
上面算法为寻找多于三个点的最优平面提供了一种简单有效的方法。它可以用于各种应用中,例如,多边形建模、表面拟合和运动跟踪。