返回

变换下的二阶偏导求解:揭秘坐标变换的奥秘

见解分享

在微积分中,坐标变换是一种强大的工具,可以帮助我们从一个坐标系转换到另一个坐标系,从而简化计算并获得新的视角。在本文中,我们将探讨如何利用坐标变换来求解二阶偏导数,并揭秘坐标变换的奥秘。

对于给定的函数u=f(x,y),如果它具有二阶连续偏导数,我们可以通过链式法则来求解其在新的坐标系下的二阶偏导数。

假设我们有一个新的坐标系(u,v),并且旧坐标系(x,y)和新坐标系(u,v)之间的关系由以下方程给出:

x=x(u,v)
y=y(u,v)

那么,我们可以使用链式法则来计算\frac{\partial^2 u}{\partial x^2}

\frac{\partial^2 u}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)
=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial u}{\partial v}\frac{\partial v}{\partial x}\right)
=\frac{\partial^2 u}{\partial u^2}\left(\frac{\partial x}{\partial u}\right)^2+2\frac{\partial^2 u}{\partial u\partial v}\frac{\partial x}{\partial u}\frac{\partial x}{\partial v}+\frac{\partial^2 u}{\partial v^2}\left(\frac{\partial x}{\partial v}\right)^2

类似地,我们可以使用链式法则来计算\frac{\partial^2 u}{\partial y^2}

\frac{\partial^2 u}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)
=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial u}{\partial v}\frac{\partial v}{\partial y}\right)
=\frac{\partial^2 u}{\partial u^2}\left(\frac{\partial y}{\partial u}\right)^2+2\frac{\partial^2 u}{\partial u\partial v}\frac{\partial y}{\partial u}\frac{\partial y}{\partial v}+\frac{\partial^2 u}{\partial v^2}\left(\frac{\partial y}{\partial v}\right)^2

为了简化计算,我们可以引入雅可比矩阵:

J=\begin{bmatrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix}

那么,我们可以将\frac{\partial^2 u}{\partial x^2}\frac{\partial^2 u}{\partial y^2}表示为:

\frac{\partial^2 u}{\partial x^2}=J^TJ\frac{\partial^2 u}{\partial u^2}
\frac{\partial^2 u}{\partial y^2}=J^TJ\frac{\partial^2 u}{\partial v^2}

通过利用坐标变换和链式法则,我们可以将二阶偏导数的计算从旧坐标系转换到新坐标系,从而简化计算并获得新的视角。