返回

决战 Flink 高频考点,万字超全攻略,让你面试无压力!

人工智能

大数据时代,Flink 以其强大的流处理能力和高度一致性的状态管理机制,成为炙手可热的技能。想要在 Flink 的面试中拔得头筹,对高频考点的掌握必不可少。本文汇集了万字超全的 Flink 高频考点,助你轻松应对面试挑战,自信展现专业能力。

选择题

1. 以下哪个不是 Dataset 的转换算子?

A. readTextFile
B. reduce distinct
D. rebalance
A

2. 关于状态,以下说法错误的是?

A. 状态可以存储在内存或外部存储中
B. 只有 keyed stream 才能使用状态
C. 状态可以用于实现累加、求平均值等操作
B

简答题

1. Flink 的流处理机制与批处理机制有何区别?

流处理:

  • 处理数据流,以无限流的形式输入
  • 持续计算并更新结果,无需等待所有数据到达
  • 注重实时性和延迟性

批处理:

  • 处理有限数据集,一次性输入所有数据
  • 计算完成后才输出结果
  • 注重准确性和完整性

2. 解释 Flink 中窗口操作的作用和分类。

窗口操作的作用:

  • 将连续数据流分组为有限大小的窗口
  • 在每个窗口内对数据进行聚合或转换

窗口分类:

  • 滑动窗口: 数据流不断进入窗口,窗口向前滑动
  • 滚动窗口: 窗口随着数据流定期创建和销毁
  • 会话窗口: 基于事件的时间间隔或空闲时间,将相关事件分组

算法题

1. 使用 Flink 实现一个 WordCount 程序。

import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;

public class WordCount {

    public static void main(String[] args) throws Exception {
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        DataSource<String> data = env.readTextFile("input.txt");

        AggregateOperator<Tuple2<String, Integer>> wordCounts = data
                .flatMap((String line) -> Arrays.stream(line.split(" ")).map(word -> Tuple2.of(word, 1)))
                .groupBy(0)
                .sum(1);

        DataSet<Tuple2<String, Integer>> result = wordCounts.execute();

        for (Tuple2<String, Integer> wc : result.collect()) {
            System.out.println(wc.f0 + " : " + wc.f1);
        }
    }
}

2. 使用 Flink 实现一个滑动窗口,每 5 秒统计一次过去 10 秒的数据。

import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

public class SlidingWindow {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<Tuple2<String, Integer>> dataStream = env.addSource(new MySource());

        SingleOutputStreamOperator<Tuple2<String, Integer>> windowCounts = dataStream
                .keyBy(0)
                .window(SlidingTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                .aggregate(new MyAggregateFunction());

        windowCounts.print();
        env.execute();
    }

    public static class MySource implements SourceFunction<Tuple2<String, Integer>> {

        private volatile boolean running = true;

        @Override
        public void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {
            int i = 0;
            while (running) {
                ctx.collect(Tuple2.of("word" + i, i));
                i++;
                Thread.sleep(1000);
            }
        }

        @Override
        public void cancel() {
            running = false;
        }
    }

    public static class MyAggregateFunction implements AggregateFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> {

        @Override
        public Tuple2<String, Integer> createAccumulator() {
            return Tuple2.of("", 0);
        }

        @Override
        public Tuple2<String, Integer> add(Tuple2<String, Integer> value, Tuple2<String, Integer> accumulator) {
            return Tuple2.of(value.f0, value.f1 + accumulator.f1);
        }

        @Override
        public Tuple2<String, Integer> getResult(Tuple2<String, Integer> accumulator) {
            return accumulator;
        }

        @Override
        public Tuple2<String, Integer> merge(Tuple2<String, Integer> a, Tuple2<String, Integer> b) {
            return Tuple2.of(a.f0, a.f1 + b.f1);
        }
    }
}

通过掌握这些 Flink 高频考点,你将能够在面试中自信从容地回答问题,展示对 Flink 知识体系的深入理解。相信有了这份超全攻略,你必能斩获心仪的 Flink 职位!