返回
决战 Flink 高频考点,万字超全攻略,让你面试无压力!
人工智能
2023-11-17 13:31:35
大数据时代,Flink 以其强大的流处理能力和高度一致性的状态管理机制,成为炙手可热的技能。想要在 Flink 的面试中拔得头筹,对高频考点的掌握必不可少。本文汇集了万字超全的 Flink 高频考点,助你轻松应对面试挑战,自信展现专业能力。
选择题
1. 以下哪个不是 Dataset 的转换算子?
A. readTextFile
B. reduce distinct
D. rebalance
A
2. 关于状态,以下说法错误的是?
A. 状态可以存储在内存或外部存储中
B. 只有 keyed stream 才能使用状态
C. 状态可以用于实现累加、求平均值等操作
B
简答题
1. Flink 的流处理机制与批处理机制有何区别?
流处理:
- 处理数据流,以无限流的形式输入
- 持续计算并更新结果,无需等待所有数据到达
- 注重实时性和延迟性
批处理:
- 处理有限数据集,一次性输入所有数据
- 计算完成后才输出结果
- 注重准确性和完整性
2. 解释 Flink 中窗口操作的作用和分类。
窗口操作的作用:
- 将连续数据流分组为有限大小的窗口
- 在每个窗口内对数据进行聚合或转换
窗口分类:
- 滑动窗口: 数据流不断进入窗口,窗口向前滑动
- 滚动窗口: 窗口随着数据流定期创建和销毁
- 会话窗口: 基于事件的时间间隔或空闲时间,将相关事件分组
算法题
1. 使用 Flink 实现一个 WordCount 程序。
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
public class WordCount {
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSource<String> data = env.readTextFile("input.txt");
AggregateOperator<Tuple2<String, Integer>> wordCounts = data
.flatMap((String line) -> Arrays.stream(line.split(" ")).map(word -> Tuple2.of(word, 1)))
.groupBy(0)
.sum(1);
DataSet<Tuple2<String, Integer>> result = wordCounts.execute();
for (Tuple2<String, Integer> wc : result.collect()) {
System.out.println(wc.f0 + " : " + wc.f1);
}
}
}
2. 使用 Flink 实现一个滑动窗口,每 5 秒统计一次过去 10 秒的数据。
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
public class SlidingWindow {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> dataStream = env.addSource(new MySource());
SingleOutputStreamOperator<Tuple2<String, Integer>> windowCounts = dataStream
.keyBy(0)
.window(SlidingTimeWindows.of(Time.seconds(10), Time.seconds(5)))
.aggregate(new MyAggregateFunction());
windowCounts.print();
env.execute();
}
public static class MySource implements SourceFunction<Tuple2<String, Integer>> {
private volatile boolean running = true;
@Override
public void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {
int i = 0;
while (running) {
ctx.collect(Tuple2.of("word" + i, i));
i++;
Thread.sleep(1000);
}
}
@Override
public void cancel() {
running = false;
}
}
public static class MyAggregateFunction implements AggregateFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> {
@Override
public Tuple2<String, Integer> createAccumulator() {
return Tuple2.of("", 0);
}
@Override
public Tuple2<String, Integer> add(Tuple2<String, Integer> value, Tuple2<String, Integer> accumulator) {
return Tuple2.of(value.f0, value.f1 + accumulator.f1);
}
@Override
public Tuple2<String, Integer> getResult(Tuple2<String, Integer> accumulator) {
return accumulator;
}
@Override
public Tuple2<String, Integer> merge(Tuple2<String, Integer> a, Tuple2<String, Integer> b) {
return Tuple2.of(a.f0, a.f1 + b.f1);
}
}
}
通过掌握这些 Flink 高频考点,你将能够在面试中自信从容地回答问题,展示对 Flink 知识体系的深入理解。相信有了这份超全攻略,你必能斩获心仪的 Flink 职位!